GR 14

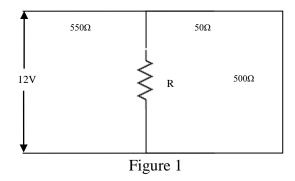
I B. Tech I Sem Supple & II Sem Regular Examinations, June, 2015 Basic Electrical Engineering

(Common to EEE, ECE, CSE, BME, IT, CE & ME)

Time: 3 hours

Max Marks: 70

PART – A			
Answer ALL questions.	All questions carry equal marks *****		


	10 * 2 Marks = 20 M	arks
1). a	Explain Ohm's Law.	[2]
b	Give the relations of Star to Delta Transformation.	[2]
c	If 'n' capacitors are connected in parallel, obtain the expression for Ceq.	[2]
d	With a phasor representation explain the concept of Lagging Current.	[2]
e	A current of $i=5Sin(100\pi t + 30^{\circ})$ flows through an impedance of $(6+j8)\Omega$.	[2]
	Determine the Apparent Power and Power Factor.	
f	Define the terms Form factor and peak factor and give their values for a Sinusoidal	[2]
	Signal.	
g	State Thevinin's and Norton's Theorem.	[2]
h	Define the terms Bandwidth and Quality Factor.	[2]
i	Give the classification of DC Motors.	[2]
j	What are the different types of Transformers? Explain.	[2]

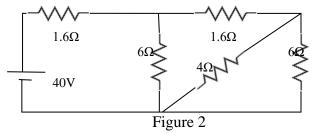
PART – B

Answer any FIVE questions. All questions carry equal marks *****

5 * 10 Marks = 50 Marks

- **2.** a) Explain the Kirchoffs Laws with example.
 - b) What is the value of the unknown resistor R in the circuit shown in figure 1 below if the voltage drop across the 500Ω resistor is 2.5V.

3. a) An RLC circuit has 100Ω , 1mH and 0.5μ F connected in series. If the circuit is [10] excited by a supply of V=200 sin (100 π t), determine the impedance of the circuit and current flowing in the circuit.


[10]

GR 14

[10]

SET - 1

3. b) Find the current through the 4Ω resistor for the circuit in figure 2 below.

- **4.** a) Explain the concept of Generation of a Sinosoidal Voltage.
 - b) Obtain the expression for the RMS and Average values of the alternating signal given in the figure 3 below.

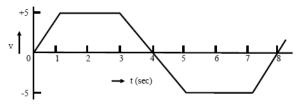


Figure 3

- a) Explain the concept of Resonance and obtain the expression for the Resonant [10] Frequency of a parallel RLC circuit.
 - b) Explain the procedure for circuit analysis using nodal analysis with an example.
- 6. With a neat sketch explain the construction and working of a single phase [10] transformer and derive the expression for the induced emf.
- 7. a) Deduce the current I supplied by the battery in the circuit shown in figure 4 [10] below.

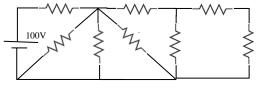
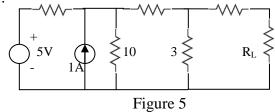



Figure 4

- b) Define terms Apparent Power, Active Power, Reactive Power and Power factor.
- 8. a) Calculate the maximum power delivered to load resistor R_L of the circuit in [10] figure 5 below.

b) List out the various applications of DC Motors.
